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this text, Aij stands for the ði; jÞ�entry of a m

for its i th row.
a b s t r a c t

Nonnegative matrix factorization consists in (approximately) factorizing a nonnegative data matrix by

the product of two low-rank nonnegative matrices. It has been successfully applied as a data analysis

technique in numerous domains, e.g., text mining, image processing, microarray data analysis,

collaborative filtering, etc.

We introduce a novel approach to solve NMF problems, based on the use of an underapproximation

technique, and show its effectiveness to obtain sparse solutions. This approach, based on Lagrangian

relaxation, allows the resolution of NMF problems in a recursive fashion. We also prove that the

underapproximation problem is NP-hard for any fixed factorization rank, using a reduction of the

maximum edge biclique problem in bipartite graphs.

We test two variants of our underapproximation approach on several standard image datasets and

show that they provide sparse part-based representations with low reconstruction error. Our results are

comparable and sometimes superior to those obtained by two standard sparse nonnegative matrix

factorization techniques.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Nonnegative matrix factorization (NMF) is a recent data
analysis technique with applications in image processing, text
mining, spectral unmixing, air emission control, computational
biology, clustering, etc. (see [1–4] and references therein). NMF
can be described as follows: given a nonnegative input matrix
MARm�n

þ and an integer 1rrominðm;nÞ, find two nonnegative
matrices V ARm�r

þ and WARr�n
þ whose product approximates the

input matrix as closely as possible:

M� VW ; ð1Þ

so that VW is a low-rank approximation of M. Matrix factorization
can be interpreted as a linear factor model: assuming that each
column of the input matrix M represents an element of a dataset,
decomposition (1) can be written as2

M:j �
X

k

V:kWkj; 8j;
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atrix A, A:j for its j th column
i.e., each input column M:j is a linear combination of a set of r basis
elements V:k with corresponding weights Wkj.

In contrast with standard linear factor model techniques such
as principal component analysis, NMF considers nonnegativity of
the input columns to be an important feature and consequently
requires the basis elements to be also nonnegative, so that they
can be interpreted in the same way (e.g., these columns can
correspond to images described by nonnegative pixel intensities
or to texts represented by vectors of nonnegative word counts).
Furthermore, NMF imposes nonnegativity of the weights, leading
to an essentially additive reconstruction of the input columns by
the basis elements. This representation is then part-based: basis
elements V:k will represent common parts of the columns of M:j.
For example, if each column of M represents a face using pixel
intensities, the basis elements generated by NMF can be facial
features, such as eyes, noses and lips, as shown in Fig. 1.

This low-rank approximation technique with nonnegativity
constraints was introduced in 1994 by Paatero and Tapper [5] and
started to be extensively studied after the publication of an article
by Lee and Seung [6] in 1999. Since an exact representation of the
input matrix cannot be obtained in general, the quality of the
approximation is measured by some criterion, typically the sum
of the squares of the errors on the entries, which leads to the
following minimization problem3:

min
V ARm�r ;W ARr�n

JM�VWJ2
F such that V Z0 and WZ0: ðNMFÞ
3 JAJF ¼
P

i;j A2
ij

� �1=2
denotes the Frobenius norm of matrix A.
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Fig. 1. NMF applied to the CBCL face database #1, MIT Center For Biological and Computation Learning (available at http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.

html). It consists of the approximation of 2429 gray-level images of faces represented with 19� 19 pixels (columns of M) using r ¼ 49 basis elements (columns of V).
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An important feature of NMF is that its nonnegativity
constraints typically induce sparse factors, i.e., factors with
relatively many zero entries. Intuitively, decomposition into parts
requires the basis elements to be sparse, cf. Fig. 1. More formally,
the reason for this behavior is that stationary points ðV ;WÞ of NMF
will be typically located at the boundary of the feasible domain
Rm�r
þ �Rr�n

þ , hence will feature zero components. This can be
explained with the first-order optimality conditions: because the
set of stationary points of a problem of the type

min
xARn

f ðxÞ such that xZ0

is given by the following expression (where rf ðxÞ is the gradient
of f):

Sf ¼ fxARn
j xZ0;rf ðxÞZ0 and xi½=fðxÞ�i ¼ 0; 8ig;

some components of the solution can be expected to be equal
to zero.

Sparsity of the factors is an important consideration in
practice: in addition to reducing memory requirements to store
the basis elements and their weights, sparsity improves inter-
pretation of the factors, especially when dealing with classi-
fication/clustering problems, e.g., in text mining [7] and computa-
tional biology [8,9]. By contrast, unconstrained low-rank approx-
imations such as principal component analysis (PCA) do not
naturally generate sparse factors (for that reason, low-rank
approximation techniques with additional sparsity constraints
have been recently introduced; this is referred to as sparse
principal component analysis, sparse PCA or SPCA, see, e.g., [10]
and references therein).

Although solutions of NMF typically display some level of
sparsity, some applications require even sparser solutions, leading
to variants of NMF called sparse nonnegative matrix factorization.
They are in general developed in two different ways: some
authors define a priori a desired sparsity level and adapt the main
iteration of their method in order to guarantee that the factors
satisfy that level of sparsity throughout the application of the
algorithm, see, e.g., [11,12]. Alternatively, a penalty term can be
added to the objective function to prevent the algorithm from
considering dense solutions, see [13]. In particular, it is well-
known that l1- norm penalty terms induce sparser solutions
(see, e.g., [14,9,15]). More details about these techniques are given
at the beginning of Section 4.

Unfortunately the advantages of NMF (part-based representa-
tion and sparsity) over PCA come at a certain price. First, because
of the additional nonnegativity constraints, the approximation
error of the input data for a given factorization rank r will always
be higher for NMF than in the unconstrained case. Second,
optimization problem (NMF) is more difficult to solve than its
unconstrained counterpart: while PCA problems can be solved in
polynomial time (e.g., using a singular value decomposition
technique [16]), NMF problems belong to the class of NP-hard
problems, as recently showed by Vavasis [17]. However, it
should also be pointed out that these drawbacks (higher error,
NP-hardness) are also present for competing techniques empha-
sizing sparsity, such as SPCA.

Because of its NP-hardness, practical algorithms cannot be
expected to find provably optimal global solutions for (NMF) in a
reasonable amount of time and aim instead at finding locally optimal
solutions. Most methods start from some initial guess factors ðV ;WÞ
and improve them iteratively using nonlinear optimization schemes
such as projected gradient methods [18], Newton-like methods
[19,20], (block-)coordinate descent (also called alternating nonnega-
tive least squares—NNLS) [21,22,14], multiplicative updates [23], etc.
(see also [1,2,4,24] and references therein).

In this paper, we introduce a novel approach to solve NMF
problem based on the use of an underapproximation technique and
show its effectiveness to obtain sparse solutions. Section 2
introduces our underapproximation problem, motivated by a
recursive technique to solve NMF, studies the sparsity of its
solutions and proves that it is NP-hard for any fixed factorization
rank. Nevertheless, Section 3 describes an algorithm to solve it
approximately using a technique based on Lagrangian relaxation.
Finally, in the last section, we test this approach on several standard
image datasets, and show both qualitatively and quantitatively that
it provides part-based and sparse representations that are compar-
able and sometimes superior to those obtained with standard sparse
nonnegative matrix factorization techniques.
2. Nonnegative matrix underapproximation

2.1. A recursive approach

Finding a rank-one nonnegative matrix factorization, i.e.,
solving (NMF) with r¼ 1 is notably easier than for higher
factorization ranks: while the general problem is NP-hard,
computing a globally optimal rank-one approximation can be
done in polynomial time. More specifically, the first rank-one
factor of the singular value decomposition (SVD) of the input
matrix is an optimal solution: indeed, the Perron–Frobenius
theorem implies that the dominant left and right singular vectors
of a nonnegative matrix are nonnegative, while the Eckart–Young
theorem states that the outer product of these dominant singular
vectors is the best possible rank-one approximation in the
Frobenius norm.

In principle, we might try exploit this result to find factoriza-
tions of higher ranks by applying it recursively: after identifica-
tion of an optimal rank-one NMF solution ðv;wÞ, one could
subtract the vw factor from M and apply the same technique to
M�vw to recover the next rank-one factor. Unfortunately, this
idea cannot work: the difference between M and its rank-one
approximation may contain negative values (typically roughly

http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
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Fig. 2. Basis elements generated for the swimmer image dataset with r ¼ 8:

(a) sample images from the dataset, (b) NMF and (c) NMU; see Section 4 for the

algorithms used to compute the factorizations.
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half of them), so that the next SVD factor will no longer provide a
nonnegative solution. Moreover, there is no hope of replacing SVD
by another efficient technique for this step since [26] shows that
it is NP-hard to find the optimal nonnegative rank-one approxi-
mation to a matrix which is not nonnegative.

If we wish to keep the principle of a recursive algorithm finding
one rank-one factor at a time, we have to add a constraint ensuring
that the vw factor, when subtracted from M, gives a nonnegative
remainder, i.e., we need to have vwrM. Therefore we introduce a
similar upper bound constraint VWrM to the general (NMF)
problem and obtain a new problem we call nonnegative matrix

underapproximation (NMU): given MARm�n
þ and 1rrominðm;nÞ,

the NMU optimization problem is defined as

min
V ARm�r ;W ARr�n

JM�VWJ2
F such that V Z0; WZ0 and VWrM:

ðNMUÞ

Assuming we are able to solve it for r¼ 1, an underapproximation of
any rank can then be built by following the recursive procedure
outlined above. More precisely, if ðV:1;W1:Þ is a rank-one under-
approximation for M, i.e., V:1W1: �Mð ¼ R1Þ and V:1W1:rM, we
have that R2 ¼M�V:1W1: is nonnegative. R2 can then be under-
approximated V:2W2:rR2, leading to R3 ¼ R2�V:2W2:, and so on.
After r steps, we get an underapproximation of rank r

MZV:1W1:þV:2W2:þ � � � þV:rWr:

¼ ½V:1V:2 � � �V:r�½W1:;W2:; � � � ;Wr:�

¼ VW :

Besides enabling this recursive procedure, we notice that NMU
leads to a more localized part-based decomposition, in the sense
that different basis elements tend to describe disjoint parts of the
input data (i.e., involving different nonzero entries). This is a
consequence of the underapproximation constraints which
impose the extracted parts (the basis elements V:k) to really be
common features of the columns of M since

M:j]

X
k

V:kWkj; 8j:

Basis elements can only be combined to approximate a column of
M if each of them represents a part of this column, i.e., none of the
parts selected with a positive weight can involve a nonzero entry
corresponding to a zero entry in the input column M:j. The
following example demonstrates this behavior.

Example 1 (Swimmer database). The swimmer image dataset
consists of 256 binary images of a body with four limbs which can
be each in four different positions. NMF is expected to find a part-
based decomposition of these images, i.e., isolate different
constitutive parts of the images (the body and the limbs) in each
of its basis elements.

Fig. 2 displays a sample of such images along with the basis

elements obtained with NMF and NMU. While NMF elements are

rather sparse, they are mixtures of several limbs. By contrast,

NMU returns an even sparser solution and is able to extract a

single body part for each of its elements.

2.2. Sparsity

The fact that NMU decompositions naturally generate sparser
solutions than NMF can be explained as follows: since the zero
entries of M can only be underapproximated by zeros, we have

Mij ¼ 0) ðVWÞij ¼ 0) Vik ¼ 0 or Wkj ¼ 0; 8k

which shows that when the input matrix is sparse, many
components of the NMU factors will have to be equal to zero. This
observation can be made more formal: defining the sparsity sðMÞ of
a m by n matrix M as the proportion of its zero entries, i.e.,
sðMÞ ¼
#zerosðMÞ

mn
A ½0;1�;

we have the following theorem relating sparsity of M and its NMU
factors.

Theorem 1. For any nonnegative rank-one underapproximation

ðv;wÞARm
þ �Rn

þ of MARm�n
þ we have

sðvÞþsðwÞZsðMÞ:

Proof. For a rank-one matrix vw, the number of nonzeros is
exactly equal to the product of the number of nonzeros in vectors
v and w. Therefore we have that ð1�sðvwÞÞ ¼ ð1�sðvÞÞð1�sðwÞÞ

which implies sðvwÞ ¼ sðvÞþsðwÞ�sðvÞsðwÞrsðvÞþsðwÞ. Since un-
derapproximation vw satisfies 0rvwrM, it must have more
zeros than M and we have

sðMÞrsðswÞrsðvÞþsðwÞ;

proving our claim. &

Recall the recursive definition of the residuals Rkþ1 ¼ Rk�V:kWk:

and R1 ¼M. The following corollary relates their sparsity and the
sparsity of the whole rank-r approximation with that of the NMU
factors.

Corollary 1. For any nonnegative underapproximation ðV ;WÞA
Rm�r
þ �Rr�n

þ of MARm�n
þ we have for each factor

sðV:kÞþsðWk:ÞZsðRkÞZsðMÞ; 1rkrr;

and sðVÞþsðWÞZsðMÞ.

Proof. We have 0rV:kWk:rRkrM, which implies by the
previous theorem the first set of inequalities. Observing that
sðVÞ ¼ ð1=rÞ

P
ksðV:kÞ and sðWÞ ¼ ð1=rÞ

P
ksðWk:Þ is sufficient to prove

the second inequality. &

Sparsity of the residuals Rk is monotonically nondecreasing at
each step, since M¼ R1ZR2Z � � �Z0. Moreover, the following
theorem can guarantee an increase in sparsity at each step.

Theorem 2. For any locally optimal nonnegative rank-one under-

approximation ðv;wÞARm
þ �Rn

þ of MARm�n
þ , define sets I and J

(supports of vectors v and w) by

I¼ fi j vi40g; J¼ fjjwj40g;

and define matrix RðI; JÞ to be the submatrix of residual R¼M�vw

whose row and column indices belong, respectively, to I and J
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(corresponding to the submatrix of M that is not approximated by

zeros). Then there is at least one zero in each row and each column of

submatrix RðI; JÞ.

Proof. Simply observe that if Rði; JÞ40 (resp. RðI; jÞ40) for
some iA I (resp. jA J), vi (resp. wj) can be increased to obtain a
strictly better solution, which contradicts the local optimality
assumption. &

This ability of NMU to generate sparse part-based decomposi-
tion will be experimentally confirmed in Section 4.

2.3. Related work

The problem of rank-one underapproximation has been first
introduced by Levin in [27] in the case of positive stochastic

matrices. He introduced a specific objective function different
from the Frobenius norm and used a logarithmic change of
variables in order to design an iterative method based on the
corresponding optimality conditions.

In [28], the rank-one underapproximation problem is cast as a
convex problem (hence efficiently solvable) using again different
objective functions. Solutions are then used to initialize standard
NMF algorithms in order to accelerate their convergence and, in
general, find better final solutions as compared to those obtained
with random initializations. Similar behavior was observed for
other judicious initializations in [29–31].

More recently, Dong et al. [32] studied the same problem with
the additional constraint that the rank of the residual must be
strictly smaller than the rank of the factorized matrix. Using the
Wedderburn rank reduction formula, they proposed a numerical
procedure which is able to compute the maximum rank splitting
of a nonnegative matrix. However, the underlying optimization
problem is NP-hard [17] and their algorithm is not guaranteed to
find a solution in all cases.

Biggs et al. [33] also introduced a recursive procedure to solve
NMF problems: their idea is to locate and then approximate
nearly rank-one submatrices of M. However, the problem of
locating maximum rank-one submatrices is also shown to be
NP-hard, and their algorithm is not globally optimal.

2.4. Complexity

We now prove that (NMU) is NP-hard, even in the rank-one
case (unlike (NMF), which is polynomially solvable in the rank-
one case). In order to do this, the rank-one version of the problem
is proved to be equivalent to the biclique problem, which is NP-
hard. The result is then generalized to (NMU) with arbitrary
factorization rank r using a simple construction.

A bipartite graph Gb is a graph whose vertices can be divided into
two disjoint sets such that there is no edge between two vertices in
the same set. A biclique Kb is a complete bipartite graph, i.e., a
bipartite graph where all the vertices from different sets are
connected by an edge. Finally, the so-called maximum edge biclique
problem (the biclique problem for short) in a bipartite graph

Gb ¼ ðV ¼ V1 [ V2; EDðV1 � V2ÞÞ

is the problem of finding a biclique Kb ¼ ðV
0; E0Þ in Gb

(i.e., V 0 ¼ V1
0 [ V2

0 DV and E0 ¼ ðV1
0 � V2

0 ÞDE) with a maximum
number of edges jE0j ¼ jV1

0 j � jV2
0 j.

Letting MAf0;1gm�n be the adjacency matrix of Gb with
V1 ¼ fs1; . . . ; smg and V2 ¼ ft1; . . . ; tng, i.e.,

Mij ¼ 1 3 ðsi; tjÞAE;

and introducing indicator binary variables vi (resp. wj) to denote
whether si (resp. tj) belongs to the biclique Kb, the maximum edge
biclique problem (MBP) in a bipartite graph can be formulated as
follows:

min
v;w

X
i;j

ðMij�viwjÞ
2

viwjrMij; 8i; j;

vAf0;1gm; wAf0;1gn: ðMBPÞ

One can check that this objective is equivalent to maxv;w
P

i;jviwj.
In fact, Mij�viwj ¼ ðMij�viwjÞ

2 since M, v and w are binary and
MijZviwj.

The corresponding decision problem ‘‘Given K, does Gb contain a

biclique with at least K edges?’’ has been shown to be NP-complete
[34]. Therefore, the corresponding optimization problem (MBP) is
at least NP-hard.

For r¼ 1, (NMU) can be written as

min
vARm ;wARn

X
i;j

ðMij�viwjÞ
2

viwjrMij; 8i; j;

vZ0; wZ0; ðNMU1Þ

which is very close to (MBP): the difference is that vectors v and w

are required to be binary for (MBP) and nonnegative for (NMU1).
The next lemma proves that the two problems are actually
equivalent.

Lemma 1. For MAf0;1gm�n, every optimal solution ðv;wÞ of

(NMU1) is such that vw is binary, i.e., vwAf0;1gm�n, and can then

be trivially transformed into a binary optimal solution ðv0;w0ÞA
f0;1gm � f0;1gn of (MBP).

Proof. For M¼ 0, this is trivial. Otherwise, suppose ðv;wÞ is an
optimal solution of (NMU1). Let define ðv0;w0Þ as

vi
0 ¼

1 if via0

0 otherwise

�
and wj

0 ¼
1 if wja0;

0 otherwise;

(

and analyze the different possibilities: as viwjrMij, we have
either
�
 Mij ¼ 1 and 0oviwjr1) vi
0wj
0 ¼ 1;
�
 Mij ¼ 1 and viwj ¼ 0) vi
0wj
0 ¼ 0;
�
 Mij ¼ 0) viwj ¼ 0) vi
0wj
0 ¼ 0.
Therefore, viwjrvi
0wj
0 rMij which implies

JM�v0w0JF rJM�vwJF :

By optimality of ðv;wÞ, we must have vw¼ v0w0Af0;1gm�n.
Therefore, ðv0;w0Þ ¼ ðv=maxðvÞ;w=maxðwÞÞ is an optimal binary
solution of (NMU1) which is then also an optimal solution of
(MBP) (note that we must have maxðvÞ ¼maxðwÞ�1). &

Corollary 2. (NMU1) is NP-hard.

We now generalize Corollary 2 to the more general case of
(NMU) with r41.

Theorem 3. (NMU) is NP-hard.

Proof. Let MAf0;1gm�n be the adjacency matrix of a bipartite
graph Gb. We define the matrix A as

A¼ diagðM; rÞ ¼

M 0 . . . 0

0 M 0

^ & ^

0 . . . M

0
BBB@

1
CCCA;

which is the adjacency matrix of another bipartite graph Gr
b

which is the graph Gb repeated r times. Let ðV ;WÞ be an
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optimal solution of (NMU). Since VW ¼
Pr

k ¼ 1 V:kWk:, we have
VWrA) V:kWk:rA. Therefore ðV:k;Wk:Þ is a feasible solution of
(NMU1) for the matrix A, i.e., for the graph Gr

b. Hence, each
ðV:k;Wk:Þ corresponds to a biclique Bk

G ¼ ðV
k
1 [ Vk

2 ; E
kÞ of Gr

b with

Vika0 3 siAVk
1 and Wkja0 3 tjAVk

2 :

By optimality of ðV ;WÞ and since there are at least r independent
maximum biclique in Gr

b, each ðV:k;Wk:Þ must coincide with a
maximum biclique of Gr

b which corresponds to a maximum biclique
of Gb. This is due to the fact that, because Gr

b is the graph Gb repeated r

times, a biclique clearly cannot span two disjoint subgraphs of Gr
b.

Therefore, (NMU) is NP-hard since any instance of (MBP) can be
polynomially reduced to an instance of (NMU). &

3. An algorithm for NMU based on Lagrangian relaxation

Since (NMU), like (NMF), is a NP-hard problem, we cannot
expect to solve it up to guaranteed global optimality in a
reasonable (e.g., polynomial) computational time (unless
P¼NP). In this section, we propose a nonlinear optimization
scheme based on Lagrangian relaxation in order to compute
approximate solutions of (NMU).

Drop the m� n underapproximation constraints VWrM of
(NMU) and add them into the objective function with the
corresponding Lagrange multipliers (dual variables, forming a
matrix) LARm�n

þ , to obtain the Lagrangian function LðV ;W ;LÞ

LðV ;W ;LÞ ¼
1

2
JM�VWJ2

Fþ
Xm

i ¼ 1

Xn

j ¼ 1

LijðVW�MÞij;

where a factor of 1
2 was introduced to make the presentation

nicer. The Lagrangian relaxation subproblem LRL consists in
minimizing L for a fixed value of the L multipliers, leading to the
corresponding Lagrangian dual function f ðLÞ

f ðLÞ ¼ min
V ;W Z0

LðV ;W ;LÞ; ðLRLÞ

where f ðLÞ is well-defined because the minimum of LðV ;W ;LÞ is
always attained, due to the fact that f is bounded below and
the search space can be restricted to a compact set. Indeed,
considering each rank-one factor individually ðV:k;Wk:Þ and impos-
ing w.l.o.g. JV:kJ

2
F ¼ JWk:J

2
F ¼ JV:kJFJWk:JF ¼ JV:kWk:JF , we have

JV:kJ
2
F ¼ JWk:J

2
F

rJVWJF rJM�LJFþJM�L�VWJF r2JM�LJF ; 8k;

where we have used the trivial solution ðV ;WÞ ¼ ð0;0Þ to bound
JM�L�VWJF (cf. derivations of Section 3.1).

Standard application of Lagrangian duality tells us that

ðNMUÞ � min
V ;W Z0

sup
LZ0

LðV ;W ;LÞZ sup
LZ0

min
V ;W Z0

LðV ;W ;LÞ ¼ sup
LZ0

f ðLÞ;

where the problem on the left of the inequality is equivalent to
our original NMU formulation and the problem on the right is its
Lagrangian dual, whose solution will provide a (hopefully tight)
lower bound on the optimal (NMU). This new problem is a
nondifferentiable optimization problem with the nice property
that its objective f ðLÞ ¼minV ;W Z0LðV ;W ;LÞ is concave and
its maximization (over a convex set) is then a convex problem
(see [35] and references therein).

We describe in the next section a general solution technique,
which consists in repeatedly applying the following two steps:
1.
 Given multipliers L, compute ðV ;WÞ to (approximately) minimize
LðV ;W ;LÞ, i.e., solve (LRL); this is discussed in Section 3.1;
2.
 Given solution ðV ;WÞ, update multipliers L; this is described in
Section 3.2.
3.1. Solving the Lagrangian relaxation problem
The following derivations:

LðV ;W ;LÞ ¼
X

i;j

1

2
ðM�VWÞ2ijþ

X
i;j

LijðVW�MÞij

¼
1

2

X
i;j

M2
ij�
X

i;j

MijðVWÞijþ
1

2

X
i;j

ðVWÞ2ij

þ
X

i;j

LijðVWÞij�
X

i;j

LijMij

¼
1

2
JðM�LÞ�VWJ2

F�
1

2
JLJ2

F

show that minimizing LðV ;W ;LÞ for a fixed L is equivalent to
minimizing JðM�LÞ�VWJ2

F . Matrix N¼M�L is not necessarily
nonnegative, therefore finding V Z0 and WZ0 such that N� VW

is a more general problem than NMF. It is actually studied in
detail in [26] (see also [36]), where it is called nonnegative
factorization (NF), is formulated as

min
V ARm�r ;W ARr�n

JN�VWJ2
F such that V Z0 and WZ0; ðNFÞ

with NARm�n and 1rrominðm;nÞ and is shown to be NP-hard
for any factorization rank (including r¼ 1).

Some standard algorithms for NMF can easily adapted
to handle an input matrix that is not nonnegative, i.e.,
solve a NF problem. For this work, we decided to use a recent
technique called hierarchical alternating least squares (HALS),
proposed in [22], which alternatively updates each column of V

and each row of W with the following optimal closed-form
solutions:

V	:k ¼ argmin
V:k Z0

JðM�LÞ�VWJ2
F

¼max 0;
A:k�

Pr
l ¼ 1;lak V:lBlk

Bkk

 !
; ð2Þ

with A¼ ðM�LÞWT and B¼WWT , and

W	
k: ¼ argmin

Wk:Z0
JðM�LÞ�VWJ2

F ¼max 0;
Ck:�

Pr
l ¼ 1;lak DklWl:

Dkk

 !
;

ð3Þ

with C ¼ VT ðM�LÞ and D¼ VT V . This can be viewed as a simple
method of (block-)coordinate descent (also called alternating vari-
ables), which has been shown to perform strikingly well in practice,
and much better than the popular multiplicative updates of Lee and
Seung (see [4,15,26]). Under some mild assumptions, every limit
point of the above alternating scheme is a stationary point [4,26].

The main computational cost of one HALS iteration is the
evaluation of A and C: they each require 2mnr (floating point)
operations. One can check that the resulting total number of
operations is 4mnrþOððmþnÞr2Þ.

Remark 1. HALS is sensitive to the scaling of the initial
matrices. For example, if the initial matrices V and W are
chosen such that VWdM, optimal columns of V and optimal
rows of W computed by formulas (2) and (3) at the first step
will most likely be equal to zero. This will lead to rank defi-
cient approximations (V:kWk: ¼ 0 for some k) and numerical
problems (for V:k ¼ 0, update of Wk: is not well defined and vice
versa). If the initial matrices ðV ;WÞ are scaled [26], i.e., by
ensuring that

1¼ argmin
a

JM�aVWJF ¼
/M;VWS
/VW ;VWS

; ð4Þ
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where /A;BS¼
P

i;j AijBij ¼ traceðABT
Þ, this behavior is in general

avoided. All initial matrices used in the following have been
scaled.
3.2. Update of the multipliers L

The second step of our algorithm consists in updating L in
order to find better (i.e., higher) solutions to the Lagrangian dual
problem. Using the knowledge that any optimal solution
ðL	;V	;W	Þ of the Lagrangian dual must satisfy the following
complementarity slackness conditions

L	ijðM�V	W	Þij ¼ 0; 8i; j as well as feasibility conditions

L	ijZ0 and ðM�V	W	ÞijZ0;

we see that the update rule for the multipliers L should satisfy
the following:
�
 if ðM�VWÞij40, Lij should be decreased and eventually reach
zero if ðM�V	W	Þij40,

�
 if ðM�VWÞijo0, Lij should be increased to give more

importance to ðM�VWÞij in the cost function, hopefully in
order to get a feasible solution such that ðM�V	W	ÞijZ0.

In the sequel, we use the following rule to update L, which
satisfies the above requirements:

L’maxð0;L�mkðM�VWÞÞ; mk-0;

where mk is a predefined sequence of step lengths decreasing to
zero; L can be initialized to zero. This update is inspired from the
concept of subgradient methods [37]; in fact, one can easily check
that the quantity ðVW�MÞ is a subgradient of

f ðLÞ ¼ min
V ;W Z0

LðV ;W ;LÞ

with respect to L, i.e., if ðV ;W Þ ¼ argminV ;W Z0 LðV ;W ;LÞ, we have

f ðLÞr f ðLÞþ/V W�M;L�LS; 8L:

Two questions now arise:
�
 Since an iterative algorithm is used to solve (approximately)
the Lagrangian relaxation problem (cf. Section 3.1), after how
many of these HALS iterations do we stop and proceed to
update the multipliers L?

�
 How do we choose the sequence of step lengths mk?

Subgradient methods usually assume that the Lagrangian relaxa-
tion problem (LRL) can be solved exactly and can guarantee their
convergence to an optimal solution provided an appropriate
sequence of step sizes is selected (see, e.g., [35]), for example fmkg

satisfying the conditions

0rmk-0 such that
X1
k ¼ 0

m2
k oþ1 while

X1
k ¼ 0

mk ¼ þ1:

In the sequel, we choose to use mk ¼ 1=k, which is such a suitable
sequence. However, in our case, we cannot expect to solve (LRL)
in a reasonable amount of time since the problem is NP-hard. It
would even probably be too expensive to wait for the stabilization
of ðV ;WÞ (e.g., getting close to a stationary but not necessarily
optimal point). We therefore suggest to update ðV ;WÞ only a
constant number of times T between each update of L, which
leads to Algorithm L-NMU. Note that because we do not solve
(LRL) exactly, Algorithm L-NMU is not guaranteed to converge to
an optimal solution of the Lagrangian dual but, as we will see, it
produces satisfactory solutions in practice.
Algorithm 1. Lagrangian NMU (L-NMU)
Require: MARm�n
þ , r40, V ARm�r

þ , WARr�n
þ , maxiter, T.

Ensure: ðV ;WÞ s.t. VWtM.

1:
 L¼ 0;

2:
 for k¼ 1 : maxiter do

3:
 Update ðV ;WÞ using T iterations of HALS (2)-(3);

4:
 Update L’max 0;L� 1

k ðM�VWÞ
� �

;

5:
 end for
The additional computational cost of one iteration of
algorithm L-NMU when compared with one iteration of HALS
for NMF consists in the computation of M�L (needed in
step 3) and the update of L (at step 4), which require
2mnrþOðmnÞ operations (and, in the special case r¼ 1, 5mn

operations).

Remark 2. Because convergence is not theoretically guaranteed,
Algorithm L-NMU may end up with solutions that do not
completely satisfy the underapproximation constraint. Although
our numerical experiments show that this has no detrimental
influence on the quality of the obtained sparse part-based
representations (see Section 4), we give here a simple technique
to transform such a solution into a feasible solution. Indeed, it is
enough to consider the following QP problem (convex quadratic
objective function, linear inequality constraints) which only
involves the V factor

V	 ¼ argminV Z0;VW rMJM�VWJ2
F : ð5Þ

Because of its convexity, this problem can be solved up to global
optimality in a very efficient manner, and replacing the original V

factor by the optimal solution V	 leads to a feasible solution
ðV	;WÞ to (NMU).

Remark 3. Because update rule (5) is exact and computable in
practice, it would be natural to consider a simpler algorithm
based on its alternative application to the V and W factors,
without using the Lagrangian relaxation technique, hoping to
converge to a solution of (NMU). Unfortunately, we observed that
this is quite inefficient in practice. In fact,
�
 it is relatively computationally expensive to solve these
linearly constrained quadratic programs (with mnþmr and
mnþnr inequalities), at least compared to the HALS closed-
form update rules (2)–(3);

�
 since the underapproximation constraint is imposed at each

step, this algorithm has much less freedom to converge to good
solutions: iterates rapidly get stuck on the boundary of the
feasible domain, typically with (too) many zeros and a lower
rank. For example, assuming M has one zero in each column,
we have that for any positive matrix V the corresponding
optimal W is equal to 0:

8j; (i s:t: Mij ¼ 0

) 8j; (i s:t:
X

k

VikWkj ¼ 0)Wkj ¼ 0; 8k; j:

Therefore, such an algorithm can only work if we decide a
priori which values in V and W should be equal to zero, i.e., if
we find a good sparsity pattern for the solution, which is
precisely where the difficulty of the problem lies. Note that the
same behavior is observed if a HALS-type algorithm is used
instead of (5) (i.e., updating columns of V and rows of W

alternatively): after the update of one column of V, the residual
will have one zero in each row (cf. Theorem 2) which will
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prevent the other columns of V to be nonzero (except if the
sparsity pattern is chosen a priori).

Remark 4. The L-NMU algorithm described above is not
particularly well-suited to deal with very sparse input
matrices. In fact, one has to store a potentially dense m� n

matrix with the Lagrangian variables L. Nevertheless, Berry
et al. [38] have obtained encouraging results when applying
NMU to sparse anomaly detection problems in text
mining. Moreover, it is possible to take advantage of the
input sparsity pattern and design a computationally cheaper
method. First note that the Lagrangian variables associated
with a zero of M will be nondecreasing in the course of the
algorithm, since

0r ðV ðkÞW ðkÞÞij and ðMÞij ¼ 0) LðkÞij rLðkþ1Þ
ij ;

where superscript ðkÞ denotes the solution at step k. Therefore one
can significantly reduce the computational cost by defining

LðkÞij ¼�gðkÞ for all i; j s:t: Mij ¼ 0;

where gðkÞ is an arbitrary positive nondecreasing function, e.g.,
gðkÞ ¼ rk with r41, as is implicitly done in [26].

4. Numerical tests on image datasets

We have argued in Section 2 that NMU is potentially able to
extract a better part-based representation of the data and that its
factors should be sparser than those of the standard NMF, at the
detriment of the approximation error. In this section, we support
these claims by reporting results of computational experiments
involving two variants of Algorithm L-NMU on several image
datasets.

A direct comparison between NMU and NMF is not very
informative in itself: while the former will provide a sparser part-
based representation, the latter will feature a lower approxima-
tion error. This does not really tell us whether the improvements
in the part-based representation and sparsity are worth the
increase in approximation error. For that reason, we chose to
compare NMU with two other sparse nonnegative matrix
factorizations techniques, described below, in order to better
assess whether the increase in sparsity achieved by NMU is worth
the loss in reconstruction accuracy.

4.1. Sparse NMF

We selected and tested the following two sparse nonnegative
matrix factorization techniques that are frequently used in the
literature.
1.
soft
Hoyer describes in [11] an algorithm relying on additional
explicit sparsity constraints on the factors, enforced at each
iteration by means of a projection. The approximation error is
reduced via a combination of projected gradient and multi-
plicative updates. For our experiments, we use the MATLABs

code provided by the author.4 It should be pointed out that
Hoyer is using a different definition of sparsity: for any
nonzero n dimensional vector x, his measure of sparsity shðxÞ is
defined as

shðxÞ ¼

ffiffiffi
n
p
�JxJ1=JxJ2ffiffiffi

n
p
�1

A ½0;1�: ð6Þ
4 This code was downloaded from http://www.cs.helsinki.fi/u/phoyer/

ware.html.
Hence, a vector with a single nonzero entry is perfectly sparse

shð½0 . . .0 k 0 . . .0�Þ ¼ 1; 8ka0;

while a vector with all entries equal to each other is
completely dense

shð½k . . . k�Þ ¼ 0; 8ka0:

In our experiments, we report sparsity using both the standard
sð�Þ indicator and Hoyer’s shð�Þ measure.
2.
 Instead of enforcing sparsity at every iteration, a sparsity-
inducing penalty term can be introduced in the objective
function [13]. In particular, it is well-known that adding
l1- norm penalty terms induce sparser solutions (see, e.g.,
[14,9,15]), and we therefore solve the following problem:

min
V ;W Z0

JM�VWJ2
FþmVJVJ1þmWJWJ1; ðsNMFÞ

where JAJ1 ¼
P

ikjAikj and mV and mW are two positive
parameters controlling the sparsity of V and W. In order to
solve (sNMF), we use the HALS algorithm which can easily be
adapted to handle the additional l1�norm penalty terms (see,
e.g., [4,15]). This algorithm will be referred to as sNMF.
Technical details for the first technique are more complicated,
but it allows the sparsity of the factors to be chosen a priori.
The second technique is conceptually simpler but requires the
determination of appropriate penalizing parameters by other
means.
4.2. Tested algorithms

Algorithm L-NMU proposed in Section 3 can be used to compute
underapproximations for any given factorization rank r. This opens
the possibility of building a rank-r underapproximation in several
different ways: one simple option consists in applying algorithm
L-NMU directly to the rank-r problem—we call this method global

NMU (G-NMU). Another option consists in applying the recursive
technique outlined in the Introduction, used to motivate the
introduction of underapproximations. More specifically, this means
running algorithm L-NMU successively r times to compute r rank-
one approximations, subtracting each approximation from the input
matrix before computing the next one—we call this method
recursive NMU (R-NMU). Note that many other variants are possible
(e.g., computing two rank-r=2 approximations, computing r=2
successive rank-two approximations, etc.) but we only tested the
two above-mentioned variants, which represent two extreme cases
(no recursion and maximum recursion).

In both cases, our implementation of algorithm L-NMU computes
two HALS steps between each update of the multipliers L (i.e., we
fixed T ¼ 2). Most of the computational work done in one iteration of
L-NMU consists in computing M�L, performing the two HALS steps
and updating L; more specifically, one can estimate the computa-
tional cost of one iteration of G-NMU to 10mnrþOððmþnÞr2Þ

operations, while an R-NMU iteration takes 13mnþOððmþnÞrÞ

operations (repeated r times in the recursive procedure).
For each dataset, we test five nonnegative factorization

algorithms: NMF based on HALS updates (NMF), global NMU
(G-NMU), recursive NMU (R-NMU), sparse NMF with l1�penalty
terms (sNMF) and the algorithm of Hoyer. We also report the
results of a standard principal component analysis (PCA) to serve
as a reference (recall that the approximation error of this
unconstrained low-rank approximation, computed here with a
singular value decomposition, is globally minimal for the given
rank, but that its factors are neither nonnegative nor sparse).

http://www.cs.helsinki.fi/u/phoyer/software.html
http://www.cs.helsinki.fi/u/phoyer/software.html
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Fig. 3. Basis elements (V:k) generated for the CBCL image dataset: (a) NMF, (b) G-NMU, (c) R-NMU and (d) sNMF with sparsity of G-NMU.

Table 1
Comparison of the relative approximation error and sparsity for the CBCL image

dataset.

Plain Improved sðVÞ sðWÞ shðVÞ shðWÞ

PCA 7.43 7.43 0 0 22 22

NMF 8.12 8.11 56 11 66 22

G-NMU 12.45 8.76 74 14 74 21

sNMFfG-NMUg 8.68 8.44 74 14 74 30

HoyerfG-NMUg 9.33 8.78 69 6 73 16

R-NMU 16.42 10.89 53 52 63 64

sNMFfR-NMUg 10.23 9.49 50 50 56 57

HoyerfR-NMUg 8.83 8.56 54 12 64 22
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4.3. Iteration limits and CPU time

Each of the five iterative algorithms described above requires a
limit on the number of its iterations; these limits were chosen in
order to roughly allocate the same CPU time to each algorithm.
More specifically, the standard NMF was given a 600-iterations
limit, which corresponds to the computation of 600 HALS updates.
The sparse sNMF, based on a slightly modified HALS update, was
also allowed 600 iterations. Because a HALS update involves
4mnrþOððmþnÞr2Þ operations, we can deduce the following
iteration budgets for G-NMU and R-NMU from the leading
terms in their corresponding operation counts: G-NMU is
allowed 600� 4

10 ¼ 240 L-NMU iterations while R-NMU can take
600� 4

13 � 180 iterations.
An exception to the equal CPU time rule was made for the

algorithm of Hoyer. Results obtained after an amount of CPU time
similar to that of the other algorithms were too poor to be
compared in a meaningful way. Indeed, because this method is
based on a projected gradient method and multiplicative updates
(both OðmnrÞ operations per iteration), which are known to
converge at a typically much slower rate, a relatively high limit of
1000 iterations had to be fixed, although the resulting CPU time is
then much larger than for the other methods (for example, on the
CBCL dataset, 600 iterations of HALS took 
 80 s while 1000
iterations of the algorithm of Hoyer needed 
 260 s).
5 Ideally, we would have imposed sparsity for both factors, but the

implementation we used seemed to return poor results in that situation.
4.4. Testing methodology

Recall we decided to test algorithms sNMF and Hoyer to assess
the quality of the sparsity-accuracy compromise proposed by
our NMU approaches. To achieve this, we decided to pit each
NMU variant against a solution of sNMF/Hoyer featuring the same
level sparsity, and compare the resulting approximation errors.
We therefore report results for eight algorithms on each dataset:
PCA, NMF, G-NMU, sNMF with the same sparsity as G-NMU,
which we denote by sNMFfG-NMUg, HoyerfG-NMUg, R-NMU,
sNMFfR-NMUg and HoyerfR-NMUg.

In order to enforce a sparsity similar to the NMU solution in
Hoyer’s code, we compute the sh measure of the NMU factors
and input it as a parameter of the method (see description in
Section 4.1); note, however, that we could only enforce this for
the sparsest of the two NMU factors.5 In the case of sNMF, sparsity
cannot be directly controlled, and penalty parameters are found
using the following adaptive procedure, which proved to work
well in practice: mV and mW are initialized to 0.1 and, after each
iteration, mV (resp. mW ) is increased by 5% if sðVÞ (resp. sðWÞ) is
below the target sparsity, and is decreased by 5% otherwise.
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Fig. 4. Basis elements for the swimmer image dataset: (a) NMF, (b) G-NMU,

(c) R-NMU and (d) sNMF with sparsity of R-NMU.

Table 2
Comparison of the relative approximation error and sparsity for the swimmer

image dataset.

Error Plain Improved sðVÞ sðWÞ shðVÞ shðWÞ

PCA 37.98 37.98 77a 0 67 17

NMF 40.41 40.41 84 45 73 67

G-NMU 47.70 46.85 94 75 85 78

sNMFfG-NMUg 50.52 42.04 89 66 84 73

HoyerfG-NMUg 42.04 41.91 90 45 80 63

R-NMU 50.92 50.71 98 66 93 65

sNMFfR-NMUg 41.66 41.17 85 66 80 79

HoyerfR-NMUgb / / / / / /

a This value is very close to the percentage of zero rows in the matrix M

(corresponding to pixels that are equal to zero in all images): in general, PCA

factors feature a zero component when all the entries of either one row or one

column of the input matrix are equal to zero.
b When imposing the sparsity level of R-NMU (shðVÞ ¼ 0:93), Hoyer’s algorithm

was not able to converge, probably because it is not well adapted to handle high

sparsity constraints. Note that sNMF is also sensitive to high sparsity require-

ments: high penalty terms sometimes lead to optimal zero factors (V:k ¼ 0 for

some k), which had to be reinitialized.

Fig. 5. Sample of Hubble space telescope spectral images.
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All algorithms were run 10 times with the same initial random
matrices and only the best solution with respect to the Frobenius
norm of the error is reported. When testing with gray-level
images, the input matrices M where normalized to have their
entries varying between 0 and 1, with 0 representing white and 1
representing black (when trying to decompose M as a sum of
parts, this make more sense than the opposite convention, since
the dark regions are the constitutive parts of the objects in the
image datasets we analyze). Finally, before computing reported
sparsity measures of the factors, any sufficiently small6 entry is
rounded to zero (indeed, because algorithms are stopped by the
iteration limit before convergence, true zeros are typically not all
6 We declare an entry of a factor to be sufficiently small if it is less than 0.1% of

the largest entry in its column.
reached). All tests were run within the MATLABs 7.1 (R14)
version, on a 3 GHz Intels CoreTM2 Dual CPU PC.

4.5. CBCL face database

The CBCL face image dataset was used for the illustrative
example of Fig. 1 and is made of 2429 gray-level images of faces
represented with 19� 19 pixels. We look for an approximation of
rank r¼ 49.

Fig. 3 displays the basis elements for NMF, G-NMU, R-NMU
and sNMFfG-NMUg (which was the best solution obtained in term
of sparsity vs. error among all four sNMF and Hoyer variants).
Both G-NMU, R-NMU and sNMF achieve a better part-based
representation than NMF, generating sparser solutions. An
interesting feature of R-NMU is that it extracts parts
successively in order of ‘‘importance’’: the first basis element is
a ‘‘mean’’ face (which is dense) while the next ones describe
different complementary parts (which become sparser as the
recursion moves on, cf. Corollary 1 and Theorem 2).

A more quantitative assessment is provided in Table 1,
reporting for the eight algorithms tested the relative error
(in percent) of their solutions

relative error ¼
JM�VWJF

JMJF

in the second column (‘‘Plain’’) and the corresponding sparsity
measures (in percent) of factors V and W in the last four columns.

As expected, PCA returns the smallest error, albeit with very
dense factors. NMF already features much sparser factors (slightly
half of the entries in V are equal to zero), at the cost of a relatively
modest increase in the approximation error (7:43-8:12). G-NMU
provides an even sparser solution (three quarters of zero entries),
increasing again the approximation error (8:12-12:45). The
factors recursively computed by R-NMU are in comparison not
as sparse: as explained above, this is because R-NMU focuses on
obtained representative parts, including relatively dense ones for
the first few steps of the recursion. However, it features a much
sparse weight vectors, giving again more credit to the hypothesis
that better parts are extracted. The corresponding approximation
error is higher than for other methods, because the intrinsically
greedy approach taken by R-NMU is not as efficient as a method
that optimizes all the factors simultaneously.

Is the increased sparsity provided by G-NMU worth the
increase in approximation error? Looking at the corresponding
results for sNMUfG-NMUg and HoyerfG-NMUg, i.e., for sparse
NMF and Hoyer’s algorithms with a similar target sparsity, it
might seem at first that the answer is negative: the other methods
return solutions with similar number of nonzeros (slightly higher
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Table 3
Comparison of the relative approximation error and sparsity for the Hubble

telescope image dataset.

Error Plain Improved sðVÞ sðWÞ shðVÞ shðWÞ

PCA 0.01 0.01 57 0 62 25

NMF 0.29 0.29 64 5 57 35

G-NMU 0.52 0.11 64 4 60 31

R-NMU 3.74 1.37 79 30 71 62

sNMFfR-NMUg 0.48 0.37 73 28 66 64

HoyerfR-NMUg 0.77 0.68 75 0 71 12

Fig. 6. Basis for the Hubble telescope: (a) NMF, (b) G-NMU, (c) R-NMU and (d) sNMF with sparsity of R-NMU.

Table 4
Comparison of the relative approximation error and sparsity for the Kuls image

dataset.

Error Plain Improved sðVÞ sðWÞ shðVÞ shðWÞ

PCA 4.36 4.36 0 0 23 15

NMF 4.38 4.38 1 7 9 38

G-NMU 6.27 4.49 3 20 8 48

sNMFfG-NMUg 4.42 4.41 2 20 8 47

HoyerfG-NMUg 4.71 4.60 2 25 8 53

R-NMU 8.13 5.73 29 31 38 67

sNMFfR-NMUg 5.24 5.01 29 31 32 59

HoyerfR-NMUg 6.82 6.54 0 71 6 92
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for Hoyer) and a lower approximation error (8.68 and 9.33 instead
of 12.45). Actually, this was expected: because it tries to return an
underapproximation, i.e., factors such that VWtM, the entries in
the error term M�VM are mostly nonnegative, while the other
techniques, with no underapproximation constraint, obtain a
smaller norm of the error by choosing the entries of M�VW to be
roughly half negative, half positive. It is therefore not completely
fair to compare directly the error of the NMU approach to the
other techniques.

In order to compensate for this, a simple rescaling could be
used, i.e., multiplying VW by a scalar since VWtM (cf. Eq. (4)).
However, we chose a different procedure that has the advantage
of benefiting all algorithms, including those whose error was
not suffering from the underapproximation constraint. Once a
solution is computed by one of the eight algorithms, we fix
the zero entries of V and W and optimize the approximation error,
i.e., minV ;W Z0JM�VWJ2

F , on the remaining (nonzero) entries
(again, HALS can easily be adapted to handle this situation). In
essence, this allows us to compare the sparsity patterns of the
different solutions. We perform 100 additional HALS steps
on each solution, and report the new relative approximation
error in the third column of Table 1 (‘‘Improved’’). Note that
sNMF and Hoyer’s errors are also improved by this procedure;
this can be explained by the fact that they were also not
directly trying to minimize the approximation error (Hoyer had
to take into account its sparsity constraint, and sNMF was
influenced by the penalty terms added to the approximation
error).

Looking now at the NMU solutions in a fairer comparison,
we observe that their approximation error becomes very close
to that of sNMF and Hoyer, in particular for G-NMU, and not
very far from the denser NMF, so that we can conclude that the
sparsity-approximation error compromise it offers is worth
while.

4.6. Swimmer database

For the swimmer image dataset described in Example 1
(256 images with 20� 11 pixels), the eight basis elements
obtained with the different algorithms are displayed in Fig. 4
and the corresponding approximation errors and sparsity
measures are reported in Table 2.

As mentioned earlier, our two NMU algorithms are the only
methods able to extract truly independent parts, while NMF and
sNMF generate a combination of them. Note, however, that the
solution generated by sNMF bears some similarity to the one
of G-NMU.

4.7. Hubble space telescope spectral images

The next image dataset consists of 100 spectral images
(128� 128 pixels) of the Hubble telescope at different frequencies
[39,40], see Fig. 5. With the choice r¼ 8, NMF generates a nearly
exact factorization (relative error 0.29%), because the spectral
reflectance of the Hubble telescope results from the additive
linear combination of the reflectance of eight constitutive
materials. Fig. 6 and Table 3 provide the visual and compu-
tational results for this dataset.

Because NMF is already a nearly exact reconstruction (Table 3),
the NMU constraints are somehow redundant: NMF and G-NMU
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Fig. 7. Basis for the Kuls image dataset, from top to bottom: sample of images, NMF, G-NMU, R-NMU, sNMF with sparsity of R-NMU.
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are basically equivalent and return solutions with very similar
sparsity measures (albeit with a slightly lower error for G-NMU).
For that reason, sNMFfG-NMUg and HoyerfG-NMUg return results
nearly identical to NMF and are omitted from the table.

Recursive R-NMU extracts parts in order of importance:
first, a global picture of the telescope and then its different
constitutive parts. This allows it to generate the sparsest
solution, with several basis elements representing well-delimited
constitutive parts of the telescope not identified by the other
methods.

4.8. Kuls illuminated faces

A static scene was illuminated from many directions with a
moving light source to produce the Kuls image dataset.7 It
consists of 20 images (64� 64 pixels) of a face. Because the
images are very similar, most of the information (more than 70%)
can be expressed with only one factor. The remaining information
resides in the different orientations of the lighting. Computational
and visual results for a rank-5 factorization are given by Table 4
and Fig. 7. We observe that NMF and G-NMU obtain similar
results: even though they are both able to extract several faces
with different lighting orientations, they do not extract a sparse
and part-based representation.
7 Available at http://www.robots.ox.ac.uk/
amb/.
R-NMU first extracts a face illuminated from all directions, and
then complementary parts representing different orientations of
the lighting (successively on the fourth row of Fig. 7: global then
light from the right, left, bottom and top). This nice recursive
extraction of the information is a direct consequence of the
underapproximation constraints. Although sNMF (with the same
sparsity requirement as R-NMU) is also able to extract a part-
based representation with a slightly better approximation error,
only two components are well-identified (left and right lighting
mixed with top and bottom lighting).
5. Conclusion

In order to solve the NMF problem in a recursive way, we have
introduced a new problem, namely nonnegative matrix under-
approximation (NMU), which was shown to be NP-hard using its
equivalence with the maximum-edge biclique problem. The
additional constraints of NMU are shown to induce sparser
factors and to lead naturally to a better part-based representation
of the data, while keeping a fairly good reconstruction. We
proposed an algorithm based on Lagrangian relaxation to find
approximate solutions to NMU.

We tested two factorization methods based on this algorithm, one
with full recursion (R-NMU), the other without recursion (G-NMU),
on several standard image datasets. After suitable post-processing, we
observed that the factors computed by these methods indeed offer a

http://www.robots.ox.ac.uk/&sim;amb/
http://www.robots.ox.ac.uk/&sim;amb/
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good compromise between their achieved sparsity and the resulting
approximation error, comparable or sometimes superior to that of
two standard sparse matrix factorization techniques.

These two variants can be contrasted in the following way:
where G-NMU mainly focuses on finding sparse factors with small
reconstruction error, in the same spirit as sNMF and Hoyer,
R-NMU typically computes an even sparser factorization corre-
sponding to a better part-based representation, albeit with a
moderate increase in the reconstruction error (due to the greedy
approach). Moreover, this second variant is useful in situations
where the factorization rank is not fixed a priori: the fact that it is
recursive allows the user to stop the procedure as soon as the
reconstruction error becomes satisfactory, without having to
recompute a completely different solution from scratch every
time a higher-rank factorization needs to be considered.
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